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Abstract

This paper analyzes the optimal assignment of objects which ar-
rive sequentially to agents organized in a waiting list. Applications in-
clude the assignment of social housing and organs for transplants. We
analyze the optimal design of probabilistic queuing disciplines, pun-
ishment schemes, the optimal timing of applications and information
releases. We consider three efficiency criteria: the vector of values of
agents in the queue, the probability of misallocation and the expected
waste. Under private values, we show that the first-come first-served
mechanism dominates a lottery according to the first two criteria but
that lottery dominates first-come first-serve according to the last cri-
terion. Punishment schemes accelerate turnover in the queue at the
expense of agents currently in the waiting list, application schemes
with commitment dominate sequential offers and information release
always increases the value of agents at the top of the waiting list.
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1 Introduction

1.1 Dynamic assignment of objects to queuing agents

This paper analyzes the dynamic assignment of objects to agents organized
in a closed waiting list. Objects arrive over time, and each time a new
object becomes available it is offered to agents according to a fixed sequence.
Each agent in the order decides whether to accept the object or not. If
the object is rejected by all agents in the queue, it is wasted. If one agent
accepts the object, a new agent enters the queue and all agents following
the agent who picked the object move up in the waiting list. Agents have a
common additive waiting cost. Our objective in this paper is to study how
different probabilistic queuing disciplines, different punishment schemes after
a rejection, and different policies of information release affect the behavior of
agents in the waiting list, their expected welfare, the turnover in the queue
and the amount of waste.

The situation we study arises whenever there exists a huge imbalance
between demand and supply for an object and monetary transfers cannot be
used to match the two sides of the market. Examples include the assignment
of social housing, of deceased donor organs for transplant, or of spots in
daycare. In all these examples, objects are heterogeneous – apartments which
become available have different sizes and locations, organs are harvested
on deceased donors of different ages and health conditions, daycares have
different staffs and amenities. Agents have preferences over the heterogeneous
objects which are assumed to be uncorrelated over time. We also suppose
that agents have private values, reflecting idiosyncratic preferences over the
different objects.

Because objects are heterogeneous, when an agent receives an offer, he
faces an optimal stopping problem. Should he accept the current object or
wait to receive a better object in the future? The answer to this question
depends on the characteristics of the assignment system, like the queuing dis-
cipline, punishment scheme after a rejection or information released to the
agents which affect the continuation value. The features of the assignment
system also influence the total number of assignments. If the queuing dis-
cipline gives an advantage to agents according to their waiting time, agents
at the top of the waiting list have a higher continuation value and hence are
more likely to be selective and to reject current proposals. This may result
in a sequence of rejections, leading to waste for objects with a short lifetime
like organs and vacancies and delays for durable objects like apartments.1

1See the article in the New York Times dated September 20, 2012
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The design of optimal assignment schemes must thus balance the values of
agents in the waiting list with the inefficiencies resulting from the waste of
objects.

Existing assignment mechanisms fall into three categories: first-come first
serve mechanism with different priority groups, scoring rules and lotteries.
First-come first serve (FCFS) mechanisms with priority groups divide appli-
cants into different priority groups and rank each applicant within a priority
according to the date of entry in the waiting list. When an object becomes
available, it is first assigned to a priority group, either through absolue priori-
ties – priority groups are ranked and the object is always proposed to priority
groups in the same order, or through a rotating or quota scheme – different
priority groups are offered the object according to a fixed rotating sequence
or the objects are proportionally divided across priority groups. Within each
priority group, objects are offered to applicants in sequence according to their
order in the waiting list. In the United States, the 1964 Civil Rights Act re-
quires public housing authorities to assign units to applicants according to a
Tenant Selection and Assignment Plan (TSAP) which functions as a FCFS
mechanism with priority groups. 2 FCFS mechanisms with priority groups
are also used to assign hearts and intestines for transplant.3. Scoring rules
assign points to applicants and establish priorities among applicants accord-
ing to their number of points. Scoring mechanisms are used to assign council
housing in England and Wales and, since the fall of 2014, in Paris.4 In both
cases, waiting time is used as a tie-breaking rule to distinguish between ap-
plicants with the same score. Scoring rules are also used to assign deceased
donors’ kidneys, livers and lungs. For the allocation of kidneys, waiting time

for a discussion of waste in the assignment of kidneys for transplants
http://www.nytimes.com/2012/09/20/health/transplant-experts-blame-allocation-
system-for-discarding-kidneys.html

2The definitions of priority groups and specific assignment of units across priority
groups differs across public housing authorities. For example, in the TSAP of the New
York Housing Authority, apartments rotate across five large classes of priority groups while
the Chicago Housing Authority assigns apartments across priority groups using absolute
priorities. The definitions of priority groups are similar but not identical in the two TSAPs.
General guidelines for TSAPs of the department of Housing and Urban Development are
given in www.hud.gov/offices/pih/rhiip/phguidebooknew.pdf. Up-to-date descriptions of
the TSAPs in New York and Chicago can be found at http://www.nyc.gov/html/nycha
and http://www.thecha.org/.

3See the OPTN Policies 6.5.B and 7.3.A updated 6/24/2015 available at
http://optn.transplant.hrsa.gov.

4See https://www.gov.uk/council-housing for council housing in England and Wales
and http://www.paris.fr/services-et-infos-pratiques/demander-un-logement-social-37 for
social housing in Paris.
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has a major weight in the computation of the score. In the case of liver and
lung transplants, waiting time is only used to break ties among applicants
with the same score.5 Finally, lotteries are used in New York to allocate
subsidized housing managed by private and nonprofit developers and listed
by NYC Housing connect. Eligible applicants to affordable housing units are
chosen by a uniform random draw. 6.

1.2 Overview of the main results

The main result of the paper compares the value of all agents in the waiting
list under the FCFS and the lottery schemes. We show that all agents in
the waiting list including the last one prefer the FCFS scheme to the lottery.
This surprising result rests on the following intuition. We first observe that
conditional on the fact that the object is picked by him or any agent with
higher rank, the expected number of waiting periods for any agent is inde-
pendent of the queuing discipline. Any agent at rank i will on average wait
i periods before obtaining the object. Note that the FCFS maximizes the
probability that the object be assigned to agents at higher ranks while the
lottery minimizes this probability. Second, we note that the expected value
of the object obtained by the agent is the average of the values picked by
agents at higher ranks. If the equilibrium behavior results in more selectiv-
ity for agents at higher ranks, the value of the objects picked by the agents
increases. We prove that agents are more selective under FCFS than under
the lottery when the set of values are discrete and for two-agents queuing
systems when the set of values is continuous.

We use the theoretical model to discuss other features of assignment rules.
Punishment schemes are used in the assignment of social housing to prevent
continuous rejections.7 The guidelines of the department of Housing and
Urban Development indicate that applicants who reject apartments without
good cause should be taken off the waiting list. In Paris, an applicant who
refuses an offer is kept out of the assignment process for six months and
regains his rank on the waiting list after this waiting period. We observe
that any punishment scheme reduces the value of agents in the queue, making
them less selective. An alternative to the sequential offer mechanism is to ask
agents to apply and commit ex ante to accepting objects after they observe
their value. Housing Connect in New York, most councils in England and

5See the OPTN Policies 8.5.D, 9.6.D and 10.4.A updates 6/24/2015 available at
http://optn.transplant.hrsa.gov.

6See https://a806-housingconnect.nyc.gov
7Punishment schemes are not used in the assignment of organs for transplants.
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the city of Paris have adopted the latter system, implementing a website
where agents apply for specific housing units. This alternative system leads
agents to accept offers based on an ex ante expectation of their continuation
value rather than an interim expectation after they observe that they have
been offered the object. This change in expected continuation values makes
agents more selective and increases their values. Finally, we consider the
effect of information release about an agent’s rank in the sequence of offers
and show that this information release increases the value of the top agent
in the waiting list but results in ambiguous effects on the other agents.

Our analysis also shows the existence of a tension between the values
of agents in the list (the ”insiders”) and the turnover in the queue which
allows ”outsiders” to join the waiting list. The FCFS maximizes the value of
insiders, but as a consequence induces highly selective behavior. By making
agents very selective, the FCFS mechanism also minimizes the probability
that an object be allocated to an agent when another agent in the waiting list
values it more. But this selectivity comes at a price, as it results in a high
fraction of objects being wasted, slowing down the turnover in the queue,
and resulting in a loss for agents who are not currently in the waiting list.
In order to accelerate turnover in the queue, the mechanism must instead
induce low selectivity. The lottery then stands out as the mechanism to be
used, as it results in low values for the insiders, and a high rate of acceptance
of the objects.

We would like to mention at the outset some limitations of the model.
First, we consider closed waiting lists and do not allow for stochastic entry
and exit in the waiting list. By fixing the size of the waiting list, we greatly
simplify the analysis and focus on the dynamics induced by endogenous ac-
ceptance decisions rather than exogenous entry and exit. In applications, the
number of agents to which any object can be offered is typically very low.
Given their short lifetime, organs can only be offered to a small number of
patients. Housing units are offered to a small number of applicants – the
New York TSAP for example specifies the length of the queue as a function
of the number of available units and the recent history of acceptances and
rejections. Hence we believe that the assumption of a closed waiting list re-
flects real assignment systems and is a reasonable approximation. Second, we
assume that agents’ values are uncorrelated across time and that all agents
have known and identical waiting costs (except for one variant of the model
where we study the effect of two known waiting costs). The absence of corre-
lation of values across times seems a good approximation in the case of organ
transplant, but is probably less compelling in the social housing application
where agents have persistent geographic preferences. However, if we con-
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sider waiting lists restricted to specific projects or small geographic areas,
the assumption of uncorrelated values becomes more plausible. Third, we
restrict attention to private values assuming away correlation across agents.
The private values model captures heterogeneity across agents, allowing for
idiosyncratic preferences over the objects, whereas the common values model
considered in the earlier literature imposes homogeneity across agents, Third,
we focus attention on additive waiting costs. This assumption is made both
for tractability and because we believe that in applications like social hous-
ing and organ transplant, agents experience flow utilities every period, before
and after the assignment of the object. The additive waiting cost can be in-
terpreted as the difference between the utility flow associated to the lowest
quality object and the utility flow without the object.

1.3 Related literature

The assignment policies for social housing and the management of waiting
lists for organs have long been the object of attention in the operations re-
search literature and more recently been discussed in the economics literature
on dynamic assignment mechanisms. Kaplan (1986) and (1987) studies ten-
ant assignment policies as FCFS mechanisms with priority groups computing
the expected probability of assignment and expected waiting time under dif-
ferent policies. In a similar vein, Zenios (1999) and Zenios, Chertow and
Wein (2000) model the kidney transplant waiting list as a FCFS mecha-
nisms with priority groups with a random assignment of organs across policy
groups and computes expected waiting times and the expected fraction of
agents receiving a kidney as a function of the random assignment policy.

Su and Zenios (2004), (2005) and (2006) and Su, Zenios and Chertow
(2004) explicitly introduce patient’s choice in the queuing model for kidney
transplants. Su and Zenios (2005) explicitly compute the optimal assignment
policy for a fixed population of heterogeneous patients, while Su, Zenios and
Chertow (2004) simulate the assignments under different policies respecting
the individual rationality of patients. Su and Zenios (2006) develop a mech-
anism design model to take into account the incentive constraints of patients
who have private information about the value of kidneys. Closest to our
analysis, Su and Zenios (2004) study the effect of the queueing discipline on
the assignment of kidneys in a queueing model where agents can reject the
offer. In their model, they show that the Last Come First Serve queuing
discipline implements the socially optimal outcome and dominates the FCFS
mechanism which results in excessive waste. The optimality of the LCFS
mechanism is due to the fact that when agents are homogeneous, the agent
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who enters the system internalizes perfectly the externalities he imposes on
the other agents in the LCFS mechanism. (See also Hassin (1985)). Su and
Zenios (2004) point out, as we do, the existence of a tension between absolute
priorities given to insiders and the negative externalities this behavior im-
poses on outsiders. Finally, Su and Zenios (2004) consider a family of queuing
disciplines, which are convex combinations of LCFS and FCFS mechanisms
and show that an increase in the weight on the FCFS rule results in more
selective behavior. Our analysis differs from Su and Zenios (2004) in several
key dimensions. First, and most importantly, we analyze he case of hetero-
geneous agents with independent values whereas they assume homogeneous
agents. Second, we consider a closed waiting list whereas their analysis rests
on the assumption that the waiting list (understood as the number of agents
to whom the object may be offered) evolves over time. Third, we consider
different efficiency criteria. They focus on a single measure of social welfare
– the expected sum of values of all (homogeneous) agents in the waiting list,
whereas we distinguish between the values of agents at different ranks in
the waiting list, the expected probability of misallocation and the expected
probability of waste.

Recent contributions in economics on the assignment of objects to queu-
ing agents with a specific focus on social housing have been proposed by
Leshno (2014), Schummer (2015) and Thakral (2015). Leshno (2014) studies
dynamic allocation of objects to queueing agents when agent’s preferences are
unknown. He shows that, in the absence of transfers, a dynamic allocation
mechanism where agents are placed in a priority buffer queue is incentive
compatible and furthermore that it is optimal to choose uniformly among
agents in the buffer queue. While his study is inspired by the same applica-
tions to social housing and organ transplant as ours, the two papers differ
in many respects. First, in Leshno (2014), agent’s preferences are perfectly
correlated across time – some agents prefer to live in the North, other in the
South, and the mechanism is designed to elicit this persistent type. In our
model, there is no persistence of types and hence no information to be elicited
from agents. Second, Leshno (2014) only considers two types of objects –
there is no vertical quality differentiation – and assumes that there is always
an agent who is assigned the object. Hence, there is no waste in his model,
and the efficiency discussion is limited to one criterion: the probability of
misallocation.

Schummer (2015) considers a model with homogeneous agents receiving
heterogeneous objects over time as in Su and Zenios (2004). He considers a
planner who can make arbitrary changes in agents’ continuation values (by
”influencing” them to accept objets of a given value) and analyzes the effect
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of influence over the values of agents in the waiting list. He shows that all
agents are adversely affected by the intervention of the planner, echoing our
result that the FCFS mechanism dominates any other mechanism for any
agent in the queue. He also highlights, as we do, the tension between the
value of agents in the waiting list and the waste of objects. Finally, Schummer
(2015) extends the analysis by considering risk-averse agents who are harmed
by uncertainty about the waiting time. He shows that an outside party whose
objective is to minimize the variance of waiting times will typically prefer to
exert influence so that all agents are teated symmetrically, a result which
relates to our finding that the lottery minimizes asymmetries in the values
of agents in the waiting list.

Thakral (2015)’s analysis is motivated by the rules implemented by public
housing authorities. He proposes a new assignment mechanism – the mul-
tiple waitlist procedure– , by which agents can choose to reject an object
and be placed on a waiting list for a different object. He shows that this
mechanism satisfies strategy-proofness, efficiency and the absence of justi-
fied envy. Thakral (2015)’s model differs from ours in several dimensions: he
assumes that preferences over objects are fixed and that uncertainty relates
to the time at which any object becomes available rather than the values of
objects. He does not explicitly consider waiting costs dynamically incurred
by the agents, but measures the cost of waiting by the maximal number of
periods an agent is willing to wait to get into his preferred building.

Finally, our work belongs more distantly to the emerging literature on
dynamic matching models, enriching assignment mechanisms with dynamic
considerations. Other papers in this literature include Abdulkadiroglu and
Loerscher (2007), Unver (2010), Bloch and Houy (2012), Bloch and Cantala
(2013) , Kurino (2014), Kennes, Monte, Tumennasan (2014) , Akbarpour, Li,
Gharan and Shayan (2014) for models without transfers and Gerkshov and
Moldovanu (2009a), (2009b), and Dizdar, Gerkshov and Moldovanu (2011)
for models with transfers.

1.4 Contents of the paper

The remainder of the paper unfolds as follows. We present our model in
Section 2. In Section 3, we characterize the equilibrium of the discrete model
with two agents, illustrating the main forces at work in our model. Section
4 extends the analysis to arbitrary queues in the discrete model. In Sec-
tion 5, we analyze the continuous model. Section 6 contains extensions of
the two-agent model to heterogeneous waiting costs, mechanisms with prior
applications, with eviction probabilities and information release about the

8



rank in the sequence. We conclude and give directions for future research in
Section 7. All proofs are collected in the Appendix.

2 The Model

2.1 Queues, values and waiting costs

We consider a society with an infinite number of agents, organized in a closed
waiting list of size n. We let i = 1, 2, ..., n denote the rank of agents in the
waiting list. Time is discrete, and at each period t = 1, 2, ..., a new object
becomes available. Agents in the waiting list draw a value for the object,
θ ∈ <. This value is observed privately by the agent, but not by the other
agents nor by the planner. In the discrete model, θ can only take on two
values, θ ∈ {0, 1}. In the continuous model, θ is taken from a continuous
distribution F with support [θ, θ].

We assume that each object is different, and that there is no persistence in
agents’ values. The values θt, θt′ drawn by an agent for the objects available
at periods t and t′ 6= t are uncorrelated. At any period t, the values drawn by
the different agents are independent. Each time an agent waits in the queue,
he incurs an additive cost c > 0. Assuming that the reservation utility of an
agent outside the queue is sufficiently low, we can guarantee that individual
rationality constraints are satisfied, so that agents always have an incentive
to enter the waiting list.

2.2 Probabilistic queuing disciplines

We let i=1,2,,n denote the rank of agents in the waiting list : the longer the
time in the queue, the lower the ranking of an agent. A queuing discipline
selects a sequence of agents according to their ranking in the waiting list. A
probabliistic queuing discipline assigns a probability distribution p over the
finite set R of all n! sequences of agents in the waiting list. We denote by
ρ : N → N a typical sequence in R. For practical reasons, we focus attention
on probabilistic queuing disciplines which respect the ranking of agents in
the waiting list and do not give higher weight to agents with higher rank.8

More precisely, we assume that the probabilistic queuing discipline satisfies
the following condition:

Assumption 2.1 For any two agents i < j, and any orders ρ, ρ′ such that
ρ(k) = ρ′(k) for all k 6= i, j, ρ(i) = ρ′(j) < ρ(j) = ρ′(i), p(ρ) ≥ p(ρ′).

8Note that an agent with higher rank in the waiting list has less priority in our model.
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Assumption 2.1 states that, whenever two agents i and j are permuted
in the sequences ρ and ρ′, then the sequence in which the agent with the
lowest rank is chosen first is picked with a probability at least as large as
the sequence in which he is chosen last. In the special case where there are
only two agents in the waiting list, R only contains two sequences ρ1 = 1, 2
and ρ2 = 2, 1 and assumption 2.1 reduces to: p(ρ1) ≥ p(ρ2). In general, we
can define a partial order in the set of probability distributions satisfying
assumption 2.1, P , by letting p � p′ if and only if, for any two agents i < j,
any any sequences ρ, ρ′ such that ρ(k) = ρ′(k) for all k 6= i, j, ρ(i) = ρ′(j) <
ρ(j) = ρ′(i), p(ρ)−p(ρ′) ≥ p′(ρ)−p′(ρ′). The set of probability distributions
satisfying assumption 2.1, P , is a complete lattice and admits a minimal and
maximal element. The maximal element is the FCFS mechanism where all
probability weight is placed on the order ρ̂, where ρ̂(i) = i for all i, that we
denote p̂. The minimal element is the lottery where all sequences ρ in R are
chosen with equal probability, p(ρ) = 1

n!
that we denote p̃.

2.3 Agents’ strategies and values

Using the probability distribution p ∈ P , the planner picks a sequence ρ of
agents to whom the object is proposed. If agent i is proposed an object of
value θ and accepts it, he collects the value θ and leaves the waiting list.
All other agents in the waiting list incur the cost c, a new agent enters the
waiting list at position n and all agents whose rank is higher than i move up
one position in the waiting list. If no agent accepts the object, the object
is wasted, all agents incur the waiting cost c, keep their rank in the waiting
list, and no new agent is allowed to enter the waiting list.

In the benchmark model, we suppose that agents are not given any in-
formation in their order in the sequence ρ. A Markovian strategy for agent
i specifies his acceptance rule for the object of value θ as a function of his
rank in the waiting list.

In the discrete model, agent i always accepts the object with value 1.
Hence, the only choice of agent i is whether he accepts the object with value
0 or not. A Markovian strategy for agent i is then the probability q(i) ∈ [0, 1]
that he accepts the object with value 0. With this notation, we write the
value of agent i as:

V (i) = Pr[object accepted by j < i](V (i− 1)− c)
+ Pr[agent i is proposed the object](Pr[θi = 1]

+(1− Pr[object accepted by j ≤ i])(V (i)− c).
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This expression distinguishes between three possible outcomes: either
the object is picked by an agent with lower rank than i, and i moves up one
position in the waiting list, or agent i picks the object and receives value 1
with probability Pr[θi = 1], or the object is not picked or picked by an agent
with higher rank than i, and i remains in the same position in the waiting
list.

In the continuous model, a Markovian strategy for agent i is a threshold
value θ̂i such that agent i accepts any object of value θ ≥ θ̂i and rejects any
object of value θ < θ̂i. The value of agent i is then given by

V (i) = Pr[object accepted by j < i](V (i− 1)− c)

+Pr[agent i is proposed the object]

∫ θ

θ̂i

θdF (θ)

+(1− Pr[object accepted by j ≤ i](V (i)− c).

Notice that there is a clear distinction between the optimal strategies
of agents in the FCFS mechanism and in any other probabilistic queuing
discipline. In the FCFS mechanism, player 1’s problem is a classical uncon-
strained optimal stopping problem which does not depend on the behavior of
other agents in the waiting list. Given agent 1’s threshold, agent 2’s thresh-
old can be computed as the solution of an optimal stopping problem, etc..
In the FCFS mechanism, there is a unique vector of optimal strategies which
can be computed as the solution of a recursive system of individual optimal
stopping problems. By contrast, for any other probabilistic queuing disci-
pline, the value of an agent depends on the strategies of other agents in the
waiting list. Agents are playing a game against other agents in the waiting
list, and the behavior of agents is characterized by a Markovian equilibrium
of the game. Equilibrium is no longer guaranteed to be unique and cannot
be computed as the solution to a recursive system.

2.4 Efficiency criteria

We consider a society with a varying population – agents enter and leave
the waiting list over time – so that there is no obvious efficiency criterion we
can apply to rank assignment mechanisms. Instead, we define three different
criteria which capture different facets of the problem. We first consider the
vector of values of agents in the waiting list, V = (V (1), V (2), ..., V (n)). This
criterion captures the welfare of insiders – agents who are currently active in
the waiting list. We compare two vectors of values using Pareto dominance.
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This is a strong criterion – stronger than the utilitarian criterion used by Su
and Zenios (2004) – but it turns out that this criterion can be applied to
compare assignment mechanisms in our model. (We note that this is also
the criterion used in Schummer (2015)). Our second criterion focusses on the
static efficiency of the assignment mechanism. Given that monetary transfers
are not allowed and that the assignment mechanism uses a priority rule which
is unrelated to the values of objects, the assignment mechanism may result
in a (static) misallocation. The object may be picked by an agent i whereas
there exists another agent j in the waiting list who would have accepted the
object and such that θj > θi. We measure this misallocation loss by the
expected probability that the object is given to an agent i when there exists
another agent j who accepts the object and for whom θj > θi. Our third
criterion is the probability that the object is rejected by all agents in the
waiting list. When an object is rejected by all agents, it is wasted and no
new agent is allowed to enter the queue. The expected waste, measured by
the probability that any object is rejected by all agents, captures the speed
at which the queue is served, and the welfare of outsiders – agents who have
not yet entered the waiting list.

3 The two-agent discrete model

We start the analysis with the simple case of a two-agent waiting list and
discrete values. This simple case will help us introduce the main results of
the paper in a setting where Markovain equilibria can easily be computed
and illustrated. When the waiting list only consists of two agents, under
Assumption 2.1, a probabilistic queueing discipline is characterized by a sin-
gle parameter p ∈ [1

2
, 1] denoting the probability that the order ρ1 = 1, 2 is

chosen.

3.1 Private values

We first consider the case of private values. Let π denote the (independent)
probability that the high value is drawn by any of the two players. We restrict
attention to pure strategies and characterize the Markovian equilibria in pure
strategies. We say that a player is selective if he rejects object 0. We first
note that, whenever p ≥ 1

2
, there cannot be an equilibrium where playert 1

is selective whereas player 2 is not.

Lemma 3.1 In the two agent discrete value model, if p 6= p̃, there is no
equilibrium where agent q(1) = 1 and q(2) = 0.
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We thus consider the three other potential equilibria: one where both
agents are selective, q(1) = q(2) = 0, one where the top agent in the queue
is selective but not the second, q(1) = 0, q(2) = 1 and one where both agents
accept the low quality object, q(1) = q(2) = 1. We index each equilibrium
by the number of selective agents, k = 0, 1, 2.

3.1.1 Both players are selective

In this equilibrium , when player 1 chooses first, with probability π, he picks
the object and player 2 moves up in the waiting list; with probability (1−π)π,
player 2 picks the object, and with probability (1− π)2, none of the players
picks the object which is wasted. If player 2 chooses first, he picks the objects
with probability π ; with probability π(1− π) player 1 picks the object and
player 2 moves up in the waiting list, and with probability (1− π)2 no agent
picks the object. We compute the values of the two agents as

V 2(1) = p[π + (1− π)(V 2(1)− c)] + (1− p)[π(1− π) + (1− π(1− π))(V 2(1)− c)],
V 2(2) = p[π(1− π) + π(V 2(1)− c) + (1− π)2(V 2(2)− c)]

+(1− p)[π + π(1− π)(V 2(1)− c) + (1− π)2(V 2(2)− c)].

Let W (i) ≡ V (i)− c denote the value of player i at the next period, taking
into account the waiting cost. Simplifying, we obtain

W 2(1) = 1− c

π(1− π + pπ)
,

W 2(2) = 1− 2c

π(2− π)

Notice that the values of both players are decreasing in the waiting cost c
and increasing in the probability π. Higher values of p result in higher values
of W 2(1) but do not affect the value of the second player. To check for which
parameters this equilibrium exists, we write conditions under which both
players reject the low value object. Player 1 rejects the low value object if

0 ≤ W 2(1),

At the time he is offered the objet, player 2 ignores his order in the sequence
and updates his beliefs about the order in the sequence using the probability
p. His continuation value after rejection is given by
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pW 2(2) + (1− p)(πW 2(1) + (1− π)W 2(2),

and player 2 rejects the low value object if

0 ≤ pW 2(2) + (1− p)(πW 2(1) + (1− π)W 2(2)).

As W 2(2) < W 2(1), an equilibrium where both agents are selective exists if
and only if

0 ≤ pW 2(2) + (1− p)(πW 2(1) + (1− π)W 2(2)).

Finally, note that in that equilibrium, the expected misallocation is zero
, µ = 0– the object will always be assigned to an agent with value 1 – and
the expected waste is ν = (1− π)2.

3.1.2 Player 1 is selective, player 2 is not

In this equilibrium, when player 1 chooses first, with probability π he picks
the object and player 2 moves up in the seniority queue while with probability
1−π, playert 2 picks the object. When player 2 chooses first, he always picks
the object. The values of the two agents are

V 1(1) = p[π + (1− π)(V 1(1)− c)] + (1− p)(V 1(1)− c),
V 1(2) = p[π(V 1(1)− c) + π(1− π)] + (1− p)π,

yielding

W 1(1) = 1− c

pπ
,

W 1(2) = π(1 + p− pπ)− 2c.

We observe again that both values are increasing in π and decreasing in
c. In addition, both values are increasing in the probability p. The values of
both agents are lower than in the equilibrium where both agents are selective,
W 1(1) < W 2(1) and W 1(2) < W 2(2). Finally, in this equilibrium, static
misallocation arises when the second player receives the object and values it
at zero, while the first player has a value of 1, an event which occurs with
probability µ = π(1− π)(1− p). Hence misallocation is decreasing in p. As
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player 2 always picks the object, the expected waste in equilibrium is equal
to zero, ν = 0. This equilibrium exists if and only if

0 ≤ W 1(1),

0 ≥ pW 1(2) + (1− p)(πW 1(1) + (1− π)W 1(2).

3.1.3 No agent is selective

In this equilibrium, both players immediately pick the object, and the values
are given by

V 0(1) = pπ + (1− p)(V 0(1)− c),
V 0(2) = p(V 0(1)− c) + (1− p)π,

so that

W 0(1) = π − c

p
,

W 0(2)− c = π − 2c.

Both values are increasing in π and decreasing in c, and the value of
the first agent is increasing in p. Clearly, the values of both agents are
lower than in the equilibrium where agent 1 is selective, V 0(1) < V 1(1) and
V 0(2) < V 1(2). In this equilibrium, misallocation occurs with probability
µ = π(1−π), when the object is allocated to the first player in the order who
has a low value when the second player in the order has a high value. This
equilibrium exists if and only if W 0(1) ≤ c and pW 0(2) + (1− p)(πW 0(1) +
(1− π)W 0(2) ≤ 0. Given that W 0(1) > W 0(2), the equilibrium exists if and
only if

c ≥ πp.

3.1.4 Equilibria of the two agent model

We illustrate in Figure 1 the regions of parameters for which the three equi-
libria exist when the two values are equiprobable, π = 1

2
. An equilibrium

where both players are selective exists if and only if

c ≤ 3(1 + p)

2(5 + p+ 2p2)
,
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an equilibrium where player 1 is selective exists if and only if

p(6− p+ p2)

8(1 + p2)
≤ c ≤ p

2
,

and an equilibrium where both players accept both objects if

c ≥ p

2
.

p

c

1/4

1/2 1

Eq 0

Eq 1

Eq 1,2

Eq 0,2

Eq 2

1/2

Figure 1: The two-agent discrete model

We first note that there exist two parameter regions where multiple equi-
libria exist: one where equilibria 0 and 2 coexist and one where equilibria 1
and 2 coexist. The multiplicity of equilibria stems from the fact that players’
choices are strategic complements: if one player is selective, the probability
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that the other player is offered the object increases. This increases the value
of the other player, making him more selective. Notice however that for high
and low values of the waiting cost, equilibrium is unique, with all agents
being selective when c is sufficiently low, and no agent being selective for c
sufficiently high. We also remark that the asymmetric equilibrium does not
exist when p is small. When agents are treated symmetrically in the order,
they do not adopt asymmetric selection strategies.

Finally, we analyze the comparative statics effect of an increase in c and
p on the equilibrium type. As c increases, agents become less selective, and
equilibrium moves from a more selective equilibrium to a less selective equi-
librium. When p increases, two effects are at play. First, the values W 2(1),
W 1(1) and W 1(2) strictly increase – the other values remain constant – in-
creasing the likelihood that agents are more selective. Second, the continu-
ation value of the second agent after a rejection, pW (2) + (1 − p)(πW (1) +
(1 − π)W (2)), decreases, decreasing the likelihood that the second agent is
selective. The two effects result in an ambiguous comparative static effect of
p on the selectivity of equilibrium. The function f(p) ≡ 3(1+p)

2(5+p+2p2)
is first in-

creasing, then decreasing in p. For example f(0.9) ∼ 0.3818 < 0.375 = f(1).
Hence, for values of the waiting cost c ∈ (0.375, 0.3818), there exists a se-
lective equilibrium at p = 0.9 but not at p = 1. In addition, the value of
the second agent is lower at the 1 equilibrium when p = 1 than at the 2
equilibrium when p = 0.9. (For example for c = 0.38, the values are −0.013
and −0.01 respectively.) Hence, we cannot in general state that that the
equilibrium value for agent 2 is increasing in p. This ambiguity disappears
when one compares the two extreme cases p = p̃ = 1

2
and p = p̂ = 1. In

both these extreme situations, the second agent’s continuation value after
a rejection is simply W (2). The second effect disappears and a shift from
p = 1

2
to p = 1 increases the selectivity of equilibrium for any c. It is then

easy to see that the equilibrium value of the second agent is higher at p = 1
than at p = 1

2
, also establishing that the misallocation loss is lower at p = 1

than at p = 1
2

but that the expected waste is higher at p = 1 than at p = 1
2
.

4 The general discrete model

4.1 Characterization of equilibrium

We now analyze the general model with discrete private values, when the
fixed size of the queue is an arbitrary number n. For any mechanism p, and
vector of (pure) strategies q, we compute two vectors: γ = γ(1), ..., γ(n)
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collects the expected probabilities that agent i picks the object, where the
expectation is taken over the realization of the values θ and of the order ρ.
The vector ω = ω(1), ..., ω(n) collects the expected probabilities that agent i
is proposed the object. Notice that, as at most one agent receives the object
at the end of the assignment process, for any realization of θ and ρ, the sum
of assignment probabilities is bounded by 1 and hence,

∑
i γ(i) ≤ 1. On the

other hand, as agents may reject the object when it is proposed to them,
we may very well have

∑
i ω(i) > 1. For example, if n = 2, both agents are

selective, values are private and the order ρ = 12 is chosen with probability
p, we compute ω(1) = p + (1 − π)(1 − p) and ω(2) = p(1 − π) + 1 − p, so
that ω(1) + ω(2) = 2 − π > 1. Notice also that, if q(i) = 1, γ(i) = ω(i) as
agent i accepts the object whenever it is proposed, whereas when q(i) = 0,
γ(i) = πω(i) as agent i only accepts the object when it is proposed and of
high value. With these notations in hand, we prove the following Lemma.

Lemma 4.1 Under Assumption 2.1, if i < j and q(i) = q(j), ω(i) ≥ ω(j)
and γ(i) ≥ γ(j).

Lemma 4.1 establishes that, when the mechanism is consistent with the
waiting list and two agents adopt the same strategy, an agent with lower
rank in the waiting list has a higher chance of being proposed the object ,
and hence a higher chance to pick the object than an agent with higher rank.
Next, we use this Lemma to show that the equilibrium values of agents are
monotonic in the rank in the waiting list:

Lemma 4.2 Under Assumption 2.1 in any equilibrium of the game, if i < j
then V (i) ≥ V (j).

The intuition underlying Lemma 4.2 is clear when one compares either
two agents who are selective or two agents who are not selective. By Lemma
4.1, agents with a lower rank in the waiting list are proposed the object more
often. Whenever agents adopt the same strategies in equilibrium, this implies
that agents with a lower rank obtain a higher value. The only case where this
reasoning may fail is when one compares the value of two agents choosing
different strategies. But then, we can use a revealed preference argument
to show that the agent with the lower rank gets a higher value choosing his
equilibrium strategy than by choosing the same strategy as the other agent,
and the result follows.

Next we use Lemma 4.2 to show that there exists no equilibrium where
agents with a lower rank in the waiting list is more selective than an agent
with a higher rank:
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Lemma 4.3 Under Assumption 2.1, if p 6= p̃ there is no equilibrium where
q(i) = 1 and q(j) = 0 for some j > i.

Given Lemma 4.3, we can focus attention on equilibria where the first k
agents in the waiting list are selective and the last (n − k) agents are not
selective. We call these equilibria k-equilibria, with k = 0, ..., n. Given these
strategies, we compute, for 0 < k < n,

V k(1) = ω(1)π + (1− γ(1))(V k(1)− c),

V k(i) =
i−1∑
t=1

γ(t)(V k(i− 1)− c) + γ(i) + (1−
i∑
t=1

)γ(t))(V k(i)− c) for i ≤ k,

V k(i) =
i−1∑
t=1

γ(t)(V k(i− 1)− c) + γ(i)π + (1−
i∑
t=1

)γ(t))(V k(i)− c) for i > k,

Solving the recursive system, we obtain

W k(i) = 1− ic∑i
t=1 γ(t)

for i ≤ k,

W k(i) =

∑k
t=1 γ(t) +

∑i
t=k+1 γ(t)π∑i

t=1 γ(t)
− ic∑i

t=1 γ(t)
for i > k.

The preceding expression shows that the value of agent i can be decom-
posed into the expected value of the object and the expected waiting cost.
Conditional on the fact that the object is picked by an agent with rank less
or equal to i, the expected waiting time is exactly equal to the rank of the
agent irrespective of the probabilistic queuing discipline. This result is easy
to understand: on expectation, each agent will stay exactly one period at
each rank, and the total number of waiting periods is thus equal to the rank
of the player. When i ≤ k, the agent will only accept objects with high value
so the expected value of the object is equal to 1. When i > k, with some
probability, the agent accepts the low value object so the expected value is
a convex combination of the high and low values. A careful inspection of
the expression also shows that a shift to the FCFS mechanism increases the
probability that the object is assigned to an agent with rank lower or equal
to i – thereby reducing expected waiting costs, and increases the probability
that an agent picks the object when he has lower rank and only accepts high
value objects – thereby increasing the expected value of the object picked.
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On the other hand, the lottery results in the lowest probability that the ob-
ject is picked by an agent with lower rank, resulting in the lowest values for
all agents. We formalize this observation in the following Proposition:

Proposition 4.4 Let Ŵ k(i) and W̃ k(i) denote the value of agent i in a k
equilibrium under the FCFS and lottery mechanisms. Then, for any mecha-
nism p ∈ P, Ŵ k(i) ≥ W k(i). For k = 0 or k = n, W k(i) ≥ W̃ k(i).

Proposition 4.4 establishes that for a fixed k equilibrium all agents prefer
the strict seniority order p̂ to any other mechanism p and when all agents
are selective or nonselective, they prefer any rule to the uniform random
order p̃. Proposition 4.4 compares the values of agents for different proba-
bilistic queuing disciplines but for a fixed equilibrium structure. Our next
results compares equilibrium values of agents across equilibrium structures.
It shows that, for any probabilistic queuing discipline p, all agents prefer an
equilibrium where the number of selective players increases.

Proposition 4.5 The equilibrium values satisfy: For any k, i, W k+1(i) ≥
W k(i).

Proposition 4.5 compares values of the same agent in two different equi-
libria – one where k agents are selective and one where k + 1 agents are
selective, and shows that an agent’s value is higher in an equilibrium with
more selective agents. The intuition underlying this result is based on the
probability ω(i) that an agent is proposed the object. When agent k + 1
switches from choosing q(k + 1) = 1 to q(k + 1) = 0, the probability that all
other agents are proposed the object weakly increases whereas his probability
of being proposed the object remains constant. We show that an increase
in the probability ω(i) for all i 6= k + 1 together with a constant ω(k + 1)
weakly raises the value of all agents in equilibrium.9

Finally, in order to compare the equilibrium values of all agents under
the FCFS and lottery mechanisms, we need to consider how a change in the
probabilistic queuing affects the degree of selectivity in equilibrium. This
step of the argument cannot be established for general queuing disciplines

9There are cases where a switch from the k to the k + 1 equilibrium has no effect on
the equilibrium values of the agents. For example in the FCFS mechanism, all agents
with rank i < k are unaffected by the switch.The equilibrium value of agent k + 1 is also
the same in both equilibria.However the equilibrium value of agent k + 2 differs in the
two equilibria, as agent k + 2 has a positive probability of being proposed the object in
the k + 1 equilibrium but not in the k equilibrium. Recursively, the equilibrium values of
agents i > k + 2 are different in the two equilibria.
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where the continuation value of agent i is a convex combination of W (i− 1)
and W (i) with weights depending on the probabilistic queuing discipline.
However, for the two extreme cases of FCFS and lottery mechanisms, the
continuation value of player i after a rejection is equal to W (i) and using
Proposition 4.4, we show that the degree of selectivity of equilibrium must
be higher under FCFS than under the lottery. This fact allows us to compare
equilibrium values of all agents under the two queuing disciplines:

4.2 FCFS vs. lotteries

We focus attention on the two extreme probabilistic queuing disciplines p̂
and p̃ and characterize all equilibrium structures under these mechanisms.

If p = p̂, a k equilibrium exists if and only if

W k(k) = 1− kc

π[1 + ...+ (1− π)k−1]
≥ 0

π[1 + ..+ (1− π)k]

π[1 + ...+ (1− π)k−1 + (1− π)k]
− (k + 1)c

π[1 + ...+ (1− π)k−1 + (1− π)k]
≤ 0.

or

1− (1− π)k+1

k + 1
≤ c ≤ 1− (1− π)k

k
.

As the function f(k) = 1−(1−π)k

k
is decreasing in k, 10 we can partition the

positive real line into intervalsAk = [1−(1−π)k+1

k+1
, 1−(1−π)k

k
] such that the unique

equilibrium of the game is a k equilibrium when c ∈ Ak.
If p = p̃, the equilibrium must treat all agents symmetrically, and the

only two candidate equilibria are the 0 and n equilibrium. The 0 equilibrium
exists if and only if c ≥ π

n
whereas the n equilibrium exists if and only if c ≤

1−(1−π)n

n
. Notice that the n equilibrium only exists when the n equilibrium

exists under the FCFS mechanism.

Proposition 4.6 The equilibrium values of all agents are higher under the
FCFS rule p̂ than under the lottery p̃. The misallocation loss is lower under
p̂ than p̃ and the expected waste is lower under p̃ than under p̂.

10To see this consider k as a continuous variable and note that the sign of f ′(k) is the
same as the sign of (1 − π)k(1 − k log(1 − π)) − 1. Differentiating g(k) = (1 − π)k(1 −
k log(1 − π)), we obtain g′(k) = −k(1 − π)k(log(1 − π))2 < 0, and finally observe that
g(0) = 1.
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5 The continuous model

In the continuous model, agents draw their values from a continuous, atomless
distribution F (·) with density function f(·).

5.1 Equilibrium in the continuous model

T he value of agent i > 1 is given by

W (i) =

∑
j<i γ(j)W (i− 1) + ω(i)

∫ θ
θi
tf(t)dt− c∑

j≤i γ(j)
. (1)

and

W (1) =
ω(1)

∫ θ
θ1
tf(t)dt− c
γ(1)

(2)

By induction, we compute

W (i) =

∑i
j=1 ω(j)

∫ θ
θj
tf(t)dt− ic∑i

j=1 γ(j)
. (3)

The previous expression decomposes the value of an agent into the ex-
pected waiting cost and the expected value of the object picked by the agent.
As in the discrete case, given that the object is picked by any agent preceding
and including agent i, the expected number of waiting periods of agent i is
equal to i. The expected value of the object picked by the agent is easy to
compute. Given that the agent expects to spend one period at every state
j = 1, ..., i, his expected value of the object is the expectation over all possi-
ble ranks j ≤ i, of the average value of the object picked by an agent of rank
j.

We next prove that agents with lower seniority ranks are more selective.
The proof of this result parallels the proof of Lemma 4.2 in the discrete case.
First observe Lemma 4.1 can be directly adapted to the continuous model11:

Lemma 5.1 Under Assumption 2.1, if i < j and θ(i) = θ(j), ω(i) ≥ ω(j)
and γ(i) ≥ γ(j).

Based on Lemma 5.1, we establish

11We omit the proof because it is identical to the proof of Lemma 4.1
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Lemma 5.2 Under Assumption 2.1 in any equilibrium of the game, if i < j
then W (i) ≥ W (j).

Lemma 5.2 shows that equilibrium values are ranked according to the
seniority in the waiting queue. In equilibrium, the optimal stopping rule of
agent i leads him to accept any value greater than the threshold θ(i) which
is equal to the continuation value after rejection, a convex combination of
W (i−1) and W (i). Hence W (i) ≤ θ(i) ≤ W (i−1). Because W (i) ≤ W (i+1)
by Lemma 5.2, we conclude that θ(i+ 1) ≤ θ(i). In addition, except for the
special case of the uniform lottery, the inequality is strict as Lemmas 5.1 and
5.2 hold with strict inequality.

In the next step of the analysis, we compute how equilibrium values are
affected by a change in the probabilistic sequence, for a fixed set of thresholds
(θ(1), ..θ(n)). We prove an analog to Proposition 4.4, showing that equilib-
rium values are maximized at the FCFS mechanism and minimized at the
lottery.

Proposition 5.3 Fix a strategy vector (θ(1), ..θ(n)) with θ(1) ≥ θ(2)... ≥
θ(n). For any probabilistic sequence p ∈ P, let V be the value of the strategy
vector under p, V̂ the value under the FCFS mechanism and Ṽ the value
under the lottery. Then, for any i,

V̂ (i) ≥ V (i) ≥ Ṽ k(i).

Proposition 5.3 does not allow us to conclude that agents prefer the FCFS
scheme to the lottery or to any other scheme, because the threshold values
θ(i) differ for different probabilistic queuing disciplines. To understand better
how changes in the queuing discipline affect the equilibrium threshold of
agents, we focus attention of the FCFS rule. Under FCFS, recall that the
optimal threshold of agent i is a function only of the thresholds of the agents
preceding i in the waiting list, j = 1, .., i − 1 and is obtained as the unique
solution to the equation:

θ(i)[1− F (θ(1))..F (θ(i))] =

∫ θ

θ(1)

tf(t)dt+ F (θ(1))

∫ θ

θ(2)

tf(t)dt+

.. +F (θ(1))..F (θ(i− 1))

∫ θ

θ(i)

tf(t)dt− ic = 0.

We do the following recursive computation. Start with an arbitrary
threshold θ for the first agent, and let φ2(θ) denote the optimal threshold
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of the second agent given θ. Let φ3(θ) denote the optimal threshold of the
third agent given that the top agent adopts the threshold θ, the second agent
φ2(θ). Recursively, let φi(θ) denote the optimal threshold of the agent at rank
i given that the top agent chooses θ and all successive agents choose their
optimal thresholds. The next Proposition establishes that an increase in the
threshold of the top agent results in an increase in the optimal thresholds of
all other agents:

Proposition 5.4 For any iand any θ ≤ θ̂1 where θ̂1 is the unconstrained
optimal threshold of the top agent, φi(θ) is increasing in θ.

An immediate consequence of Proposition 5.4 is that when n = 2, the
optimal threshold of the second agent in the FCFS mechanism is increasing
in the threshold of the top agent. The more selective the first agent is, the
higher the threshold (and hence the value) of the second agent. We use this
fact to obtain sharp results in the continuous model with two-agent queues.

5.2 The two-agent continuous model

When n = 2, we compute the values of the two agents as

W1(p, θ1, θ2) = p[

∫ θ

θ1

tf(t)dt+ F (θ1)W1]

+ (1− p)[F (θ2)

∫ θ

θ1

tf(t)dt+ (1− F (θ2)(1− F (θ1)))W1 − c,

=

∫ θ
θ1
tf(t)dt

1− F (θ1)
− c

[p+ (1− p)F (θ2)](1− F (θ1)
. (4)

and

W2(p, θ1, θ2) = p[(1− F (θ(1))W1 + F (θ1)[

∫ θ

θ2

t(f)dt+ F (θ2)W2]]

+ (1− p)[
∫ θ

θ2

tf(t)dt+ F (θ2)[(1− F (θ(1))W1 + F (θ(2))W2]]− c

=
[pF (θ(1) + (1− p)]

∫ θ
θ2
tf(t)dt

1− F (θ(1))F (θ(2))

+
(1− F (θ(1)))[p+ (1− p)F (θ(2))]W1 − c

1− F (θ(1))F (θ(2))
.
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Assuming that c is sufficiently small, the Markov equilibrium is interior
and can easily be characterized. Consider first the top agent. For a fixed
W ∗

1 , the optimal choice θ∗1 is given by

θ∗1 = W ∗
1 . (5)

Replacing W ∗
1 , we compute the equilibrium threshold as the solution to the

equation ∫ θ
θ∗1

(t− θ∗1)f(t)dt

1− F (θ1)
− c

[p+ (1− p)F (θ2)](1− F (θ1)
= 0. (6)

Next consider the second agent. For fixed W ∗
1 and W ∗

2 , she selects the
optimal θ∗2 as the solution to

θ∗2 =
(1− p)(1− F (θ∗1)

pF (θ∗1 + 1− p
W ∗

1 +
F (θ∗1)

pF (θ∗1) + 1− p
W ∗

2 . (7)

Notice that, as opposed to the top agent, the second agent does not choose
a threshold value θ∗2 equal to the value W ∗

2 because he expects to move to
the top of the waiting list with some probability after a rejection. Replacing
with the values of W ∗

1 and W ∗
2 , we compute the equilibrium threshold as the

solution to the equation:

F (θ∗1)

∫ θ

θ∗2

(t− θ∗2)f(t)dt+ (1− F (θ∗1))(θ∗1 − θ∗2)− cF (θ∗1)

1− p+ pF (θ∗1)
= 0 (8)

We now compare the equilibrium values and strategies under FCFS and
other probabilistic queuing disciplines.

Proposition 5.5 Let n = 2. The equilibrium values of the two agents, W ∗
1

and W ∗
2 are strictly higher under the FCFS than under any other probabilistic

queuing discipline. The threshold of the top agent θ∗1 is higher under FCFS
than under any other probabilistic queuing discipline. The threshold of the
second agent θ∗2 is higher under the FCFS than under the lottery.

To understand Proposition 5.5 observe that the equilibrium threshold
θ∗1 is always higher under the FCFS rule – when the top agent chooses his
unconstrained optimal threshold. By Proposition 5.4, the equilibrium value
of the second agent under FCFS is increasing in the threshold of the top agent.
Hence the equilibrium value of the second agent is higher at the threshold pair
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(θ∗1, θ
∗
2) than at any other threshold pair (θ1, θ2).12 Using Proposition 5.3, we

observe that the equilibrium value of the second agent at any arbitrary fixed
threshold pair (θ1, θ2) is highest at p = 1, completing the proof. Because at
the two extreme cases p = 1 and p = 1

2
, the equilibrium values of the agents

are equal to their thresholds, the argument of Proposition 5.5 provides a
comparison between the equilibrium thresholds θ∗1 and θ∗2. For general values
of p, the argument fails and we observe in the following example that the
equilibrium threshold of the second agent θ∗2 is not a monotonic function of
p.

Example 5.6 Suppose that the distribution of values is uniform over [0, 1]
and let c = 0.1. The interior equilibrium is characterized by the two condi-
tions

θ∗1 = φ1(θ∗2) ≡ 1−

√
0.2

p+ (1− p)θ∗2
,

θ∗2 = φ2(θ∗1) ≡ 1−

√
1− θ∗1(−2θ∗1 + 3− 0.2

pθ∗1 + 1− p
.

Figure 2 displays the equilibrium threshold values θ∗1 and θ∗2 as a function
of p. The threshold of the top agent is increasing in p but the threshold of the
second agent is not monotonic. This non-monotonicity is due to the fact that,
as in the discrete model, a change in p affects the second player’s expectation
that he may become the top agent next period. This probability decreases
with p, creating a secondary effect which counters the primary effect that an
increase in p increases the values of the two players. However, for the two
extreme cases where p = 1

2
and p = 1, the continuation value is exactly equal

to the threshold, and this secondary effect disappears. It is then easy to see
that the equilibrium threshold of the second agent is always higher in FCFS
than in the lottery.

We now turn to the two other measures of efficiency.
The probability of misallocation measures the sum of the probability that

the object is picked by the fist agent when the second agent draws a higher
value and of the probability that the second agent picks the object when
the first agent draws a higher value above θ∗1. Hence, the probability of
misallocation µ is given by

12This essential step in the proof cannot be extended to waiting lists of general length,
preventing us from comparing equilibrium values in the general model.
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Figure 2: Equilibrium thresholds in the two-agent continuous model

µ = p

∫ θ

θ∗1

∫ θ

θ

f(t)dtf(θ)dθ + (1− p)
∫ θ

θ∗2

∫ θ

max{θ,θ∗1}
f(t)dtf(θ)dθ,

= p

∫ θ

θ∗1

∫ θ

θ

f(t)dtf(θ)dθ + (1− p)[
∫ θ∗1

θ∗2

∫ θ

θ∗1

f(t)dtf(θ)dθ +

∫ θ

θ∗1

∫ θ

θ

f(t)dtf(θ)dθ,

=

∫ θ

θ∗1

(1− F (θ))dθ + (1− p)
∫ θ∗1

θ∗2

(1− F (θ∗1)).

Lemma 5.7 When n = 2, the probability of misallocation is lowest at the
FCFS rule.

Finally, he probability of waste is given by

ν = F (θ∗1)F (θ∗2),

a strictly increasing function of θ∗1 and θ∗2. We observe that the probability
of misallocation is always lower at the lottery than at the FCFS mechanism.
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6 Variants and extensions

In this Section, we discuss extensions based on the two agent discrete model.
We first discuss optimal mechanisms when agents have heterogeneous waiting
costs. We then consider a model where agents apply for the object after they
learn their value. We also study the effect of releasing information about the
sequence chosen by the probabilistic queuing mechanism. Finally, we discuss
the impact of a punishment scheme where agents are evicted from the queue
with positive probability if they reject the object.

6.1 Heterogeneous waiting costs

We suppose that agents are divided into two categories: a fraction λ of agents
with low waiting costs c, and a fraction 1 − λ of agents with high waiting
costs c. We suppose that the waiting cost is observable by the planner –
for example, the planner can verify whether an agent currently lives in an
apartment or not, or the health status of an agent waiting for a transplant.
Agents are now characterized by two variables: their rank in the waiting
list, and their waiting cost. In order to select an optimal mechanism, the
designer faces a trade-off between these two characteristics, and must choose
which weight to assign to seniority and waiting cost in offer sequence. More
precisely, we assume that the designer, after observing the waiting costs of
the two agents, (c, c) chooses the probability that the most senior agent
is proposed the object first, p(c, c). Because it may be optimal to let the
second agent choose first when he has a high waiting cost, we do not put any
restriction on p(c, c).

Suppose that each agent knows the waiting cost of the other agent in
the queue. The strategy of each agent assigns to each of the four possible
vectors of waiting costs (c, c) a point in {0, 1}. As each agent in the queue
chooses four actions, the total number of strategies makes it intractable to
characterize admissible equilibrium configurations as a function of the pa-
rameters.13 In order to understand the trade-off between waiting costs and
seniority rank, we focus attention on one specific equilibrium configuration:
one where the low waiting cost c is sufficiently low and the high waiting cost
c sufficiently high so that all agents with low waiting cost are selective, and
all agents with high waiting costs accept both objects.

13In principle, as each agent in the waiting list has 24 = 16 choices, the total number of
strategy vectors is 16 × 16 = 256. Characterizing equilibrium configurations with such a
large strategy set becomes intractable.
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In this equilibrium, we first compute the value of the first agent when his
waiting cost is low.

V1(c, c)− c =
p(c, c) + (1− p(c, c))(1− π) + p(c, c)(1− π)

2− π

+
(1− p(c, c))A(p(c, c), p(c, c))

2− π
− c

π(2− π)
,

V1(c, c)− c = p(c, c)π + [p(c, c)(1− π) + 1− p(c, c)]A(p(c, c), p(c, c))− c,

where

A(p(c, c), p(c, c)) = λV1(c, c) + (1− λ)V1(c, c)

= 1− (λ+ (1− λ)π(2− π))c

π(λ[p(c, c) + (1− p(c, c)(1− π))] + (1− λ)p(c, c)π2(1− π))
.

Notice that the expected continuation value A(p(c, c), p(c, c)) is increasing
in both probabilities p(c, c) and p(c, c). As A < 1, the values V1(c, c) and
V1(c, c) are also increasing in the probabilities p(c, c) and p(c, c). We next
compute the value of the first agent when his cost is high.

V1(c, c) = p(c, c)π + (1− p(c, c)π(1− π) + π(1− p(c, c))B(p(c, c), p(c, c))− c,
V1(c, c) = p(c, c)π + (1− p(c, c))B(p(c, c), p(c, c))− c,

where

B(p(c, c), p(c, c)) = λV1(c, c) + (1− λ)V1(c, c)

= π
λ(p(c, c) + (1− p(c, c))(1− π) + (1− λ)p(c, c)− c

λ(1− π(1− p(c, c)) + (1− λ)p(c, c))
.

Notice that the expected continuation value B(p(c, c), p(ø, c)) is increasing
in p(c, c) and p(c, c). As B < π, the values V1(c, c) and V1(c, c) are also
increasing in the probabilities p(c, c) and p(c, c). Turning to the second agent
we compute his value when his cost is low as

V2(c, c) =
p(c, c)(1− π) + 1− p(c, c) + [p(c, c)

2− π

+
+(1− p(c, c))(1− π)A(p(c, c), p(c, c))

2− π
− c

π(2− π)
,

V2(c, c) = p(c, c)A(p(c, c), p(c, c)) + (1− p(c, c))[π + (1− π)A(p(c, c), p(c, c))]− c
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It is interesting to note that V2(c, c) is increasing in p(c, c) but non monotonic
in p(c, c). The value V (c, c) is increasing in p(c, c) and p(c, c) but decreasing
in p(c, c). For the second agent with high costs

V2(c, c) = p(c, c)[πB(p(c, c), p(c, c)) + (1− π)π] + (1− p(c, c))π − c,
V2(c, c) = p(c, c)B(p(c, c), p(c, c)) + (1− p(c, c))π − c.

We observe that V2(c, c) is increasing in p(c, c) and p(c, c) but decreasing in
p(c, c) and V2(c, c) is increasing in p(c, c) and non monotonic in p(c, c).

Contrary to the case of homogenous waiting costs, the value of the second
agent is not necessarily increasing in the probability that the first agent is
proposed the object.14

In order to maximize EV2 it is sufficient to maximize

E = −7c(5 + 2p(c, c) + p(c, c))

6(2 + 2p(c, c) + 3p(c, c))
− p(c, c) + 2p(c, c)

4

+
p(c, c) + 2p(c, c)

2

1 + p(c, c) + 2p(c, c)− 8c

2 + 2p(c, c) + 4p(c, c)
.

We can check that ∂E
∂p(c,c)

> 0 and ∂E
∂p(c,c)

< 0. In addition, for sufficiently

large values of c and sufficiently low values of c, ∂E
∂p(c,c)

< 0 and ∂E
∂p(c,c)

> 0.
Hence, in order to maximize the expected value of the second agent, the
mechanism designer chooses p(c, c) = p(c, c) = 1 and p(c, c) = p(c, c) = 0.
The mechanism should always give the object to the second agent when he
has a high waiting cost and to the first agent when he has a low waiting cost.

6.2 Assignment with prior application

In the baseline model, we suppose that agents are given the opportunity
to accept the object in sequence. This sequential assignment rule is time
consuming as some agents choose to reject the object which is proposed to
them. As an alternative, we consider an alternative assignment rule, where
agents apply for the object after observing the value. The planner then
chooses which applicant is assigned the object using a probabilistic priority
mechanism p.

14In order to illustrate this fact, we consider the special case where λ = π = 1
2 and

compute the values of the probabilities which maximize the expected value of the second
agent, EV2 = 1

4V2(c, c) + V2(c, c) + V2(c, c) + V2(c, c).
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We consider a mechanism where, after learning his value, each agent
announces a(i) ∈ {0, 1} where a(i) = 1 means that the agent applies to
the object. A random order ρ is drawn by the mechanism designer and the
first agent in the order ρ who chooses a(i) = 1 is assigned the object. Note
that an agent with high value always applies to the mechanism and accepts
the object in the sequential mechanism. An agent with low value applies in
the mechanism with prior applications if and only if the expected value of
participating is higher than the value of not participating.

The mechanism with prior application generates the same values for the
two agents as the sequential mechanism but differs in the computation of the
continuation values for the second agent. There are three possible equilibria:
(i) one where neither of the two agents participates when the value of the
object is low, and agents obtain values V 2(1) and V 2(2), (ii) one where agent
1 only applies when the value of the object is low and agent 2 always applies,
and the values are V 1(1) and V 1(2), and (iii) one where both agents always
apply and the values are V 0(1) and V 0(2).

The top agent with low value chooses to participate if and only if

(1− p)π(V (1)− c) ≥ V (1)− c

if 2 is selective and

(1− p)(V (1)− c) ≥ V (1)− c

if 2 is not selective. Both conditions amount to

V (1)− c ≤ 0,

so that agent 1 participates when the value is low if and only if V (1)−c ≤ 0, as
in the sequential allocation model. The second agent with low value chooses
to participate if and only if

pπ(V (1)− c) ≥ π[V (1)− c] + (1− π)[V (2)− c]

if 1 is selective and

p(V (1)− c) ≥ π[V (1)− c] + (1− π)[V (2)− c]

if 1 is not selective. Hence, the equilibrium condition for agent 2 is not the
same in the two models. The difference arises from differences in the compu-
tation of the continuation value in both cases. In the sequential mechanism,
agent 2 updates his belief about the order ρ taking into the account that he
is offered the object. In the mechanism with prior application, agent 2, if he
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does not participate, computes an expected continuation value taking expec-
tations over all possible orders ρ chosen by the mechanism. More precisely,
an equilibrium where agent 2 is selective exists if and only if

π(1− p)[V (1)− c)] + (1− π)[V (2)− c] ≥ 0.

Comparing with the condition guaranteeing equilibrium in the sequential
model,

π(1− p)[V (1)− c)] + (1− π + p)[V (2)− c] ≥ 0.

we observe that, as V (2) < V (1), there is no parameter region where agent 2
is selective in the sequential model but not in the model with prior application
Hence, agents are more selective in the mechanism with prior application.
This observation suggests that the assignment model with prior application
dominates the sequential acceptance model in terms of the values of the
agents inside the queue and the static probability of misallocation, but that
the sequential model dominates the model with prior application with respect
to the probability of waste.

6.3 Information about the sequence

In the analysis, we suppose that agents know their position in the waiting
list, but ignore the sequence in which offers are made. We now consider an
alternative model where agents are told the sequence of offers. In the two-
agent queue, this information only affects the decision of the second agent.
For this agent, we distinguish between two states at which decisions must
be made: state (2, 1) when agent 2 knows that she is the first in the se-
quence of offers, and state (2, 2) where agent 2 knows that she is the second
in the sequence of offers. Notice that we do not need to distinguish between
different continuation values at the two states, and will instead only com-
pute the expected continuation value V (2) of the second agent before the
offer sequence is drawn. Notice that the continuation value in state (2, 1) is
πV (1) + (1 − π)V (2), whereas the continuation value in state (2, 2) is sim-
ply V (2). As V (1) ≥ V (2), the continuation value of agent 2 is higher at
state (2, 1) than at state (2, 2). The equilibrium in which agents 1 and 2 are
selective in all circumstances results in continuation values
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V 3(1)− c = 1− c

π(1− π + pπ)
,

V 3(2)− c = 1− 2c

π(2− π)
.

As the behavior of the second agent in the two states are identical, the values
are identical to the values in the baseline model when the sequence is not
known. This equilibrium exists as long as V 3(2)− c ≥ 0 or c ≤ π(2−π)

2
. Next

consider an equilibrium where agent 2 is selective in state (2, 1) but not in
state (2, 2). The values are given by

V 2(1)− c = 1− c

π(1− π + pπ)
,

V 2(2)− c = p[π(V 2(1)− c) + π(1− π)] + (1− p)[π + π(1− π)(V 2(1)− c)
+ (1− π)2(V 2(2)− c)],

=
π(2− π)− 2c

1− (1− p)(1− π)2

This equilibrium exists if V 2(2)− c ≤ 0 and πV 2(1)+(1−π)V 2(2)− c ≥ 0 or

π(2− π) < 2c and π − c
1−π+pπ

+ (1− π) π(2−π)−2c
1−(1−p)(1−π)2

≥ 0. Observe that both

V 2(1) and V 2(2) are increasing in p in the range of parameters for which
the equilibrium exists. Next, consider an equilibrium where agent 2 is never
selective. This results in the values

V 1(1)− c = 1− c

pπ
,

V 1(2)− c = π(1 + p− pπ)− 2c,

as in the baseline case. This equilibrium exists if πV 2(1)+(1−π)V 2(2)−c ≤ 0

and V 1(1) − c ≥ 0 or c ≥ pπ+p(1−π)π(1+p(1−π))
1+2p(1−π)

and c ≤ pπ. Finally, in an
equilibrium where no agent is selective, values are given by

V 0(1)− c = π − c

p
,

V 0(2)− c = π − 2c.

as in the baseline case, and the equilibrium exists if and only if c ≥ pπ. We
now compare the two régimes where agents are informed and not informed
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about the sequence. We check that the utility of both agents are increasing
in the degree of selectivity of the equilibrium, V 3(1) − c = V 2(1) − c >
V 1(1)− c > v0(1)− c and V 3(2)− c > V 2(2)− c > V 1(2)− c > V 0(2)− c.

We also need to compare the parameter regions under which different
equilibria exist. Notice that the parameter regions where the selective equi-
librium (equilibrium 3) exists in the informed case is a subset of the parame-
ter region under which the selective equilibrium (equilibrium 2) exists in the
baseline case. However, the parameter region under which either equilibrium
2 or 3 exists is a superset of the region under which equilibrium 2 exists in the
baseline case. Similarly, the parameter region under which equilibrium 1 ex-
ists in the informed case is a subset of the region under which the equilibrium
exists in the baseline case, but the region under which either equilibrium 1
or 2 exists is a superset of the region under which equilibrium 1 exists in the
baseline case. The parameter region where equilibrium 0 exists is identical in
the two régimes. We illustrate these different regions when π = 1

2
in Figure

3.
Giving information about the sequence makes agent 2 more selective when

she is first in the sequence but less selective when she is second. For agent
1, this always results in a positive effect on value, as it increases the param-
eter region for which agent 1 is selective when choosing first, increasing the
opportunity that agent 1 gets to pick the object. The balance between the
two effects on agent 2’s expected value is ambiguous. There are parameter
regions for which the selective equilibrium exists in the baseline case but not
in the informed régime, making agent 2 worse off, and parameter regions
where equilibrium 2 exists in the informed régime but not in the baseline
case, making agent 2 better off.

6.4 Eviction from the queue

We consider the effect of an eviction mechanism, where agents are taken away
from the queue if they refuse an object with positive probability. Let β(1)
and β(2) denote the probability that the first – respectively the second –
agent remain in the queue if they refuse the object. In an equilibrium where
both agents are selective, the equilibrium values are given by

V 2(1)− c =
pπ + (1− p)(1− π)π − c

pπ + (1− p)(1− π)π + (1− β(1))[p(1− π) + (1−)(1− π)2]
,

V 2(2)− c =
pπ(1− π) + [pπ + (1− pi)πβ(2)][V 2(1)− c]− c

1− β(2)(1− π)2
.
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Figure 3: The two agent discrete model with information about the sequence

Clearly, V 1(1) is increasing in β(1) and V 2(2) is increasing in β(1) and β(2).
Evicting the agents from the queue decreases their expected continuation
values, making them less likely to be selective. In the equilibrium where only
agent 1 is selective, the values become

V 1(1)− c =
pπ − c

pπ + (1− β(1))p(1− π)
,

V 1(2)− c = pπ(V 1(1)− c) + pπ(1− π) + (1− p)π − c.

The values V 1(1) and V 1(2) are both increasing in β(1). Finally, the values in
the equilibrium where both agents accept both objects are clearly unaffected
by the eviction probabilities. We thus observe that introducing eviction
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probabilities reduces the values of the agents in the queue and makes them less
lily to be selective. As agents are less selective, the misallocation probability
increases and the expected waste decreases. Hence, introducing eviction
probabilities can only reduce the welfare of agents currently in the queue. It
also accelerates the turnover in the queue, improving the well being of agents
who are waiting to be included in the queue.

7 Conclusion

This paper analyzes the optimal assignment of objects which arrive sequen-
tially to agents organized in a waiting list. Applications include the assign-
ment of social housing and organs for transplants. We analyze the optimal
design of probabilistic queuing disciplines, punishment schemes, the optimal
timing of applications and information releases. We consider three efficiency
criteria: the vector of values of agents in the queue, the probability of mis-
allocation and the expected waste. Under private values, we show that the
first-come first serve mechanism dominates a lottery according to the two
first criteria, and that the lottery dominates first come first serve according
to the third criterion. Punishment schemes accelerate turnover in the queue
at the expense of agents currently in the waiting list, application schemes
with commitment dominate sequential offers and information release always
increases the value of agents at the top of the waiting list.

Our analysis thus gives support to the use of waiting time as a primary
criterion in the priority order in order to maximize the value of agents inside
the queue, and of the use of lotteries in order to minimize waste. It also
shows that punishment schemes like eviction from the queue harm agents
currently inside the queue but accelerate turnover in the queue. There re-
main a number of aspects of dynamic allocation that we have not yet studied.
What happens if the waiting list is open and agents enter and exit the wait-
ing list stochastically? What if agents have private information about their
values and waiting costs and the planner designs a mechanism to elicit this
information? How do our results extend to the case of common values? Do
our results still hold when agents discount the value of future objects? We
plan to tackle these issues in future research.
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A Proofs

Proof of Lemma 3.1: This is a special case of Lemma 4.3.

Proof of Lemma 4.1: To compute ω(i) and ω(j), consider a fixed realiza-
tion of the order ρ and of the values θ and let ω(i, ρ, θ) denote the probability
that agent i is proposed the object. Fix one specific order ρ where ρ(i) < ρ(j)
and let ρ′ be the order in which ρ(k) = ρ′(k) for all k 6= i, j, ρ(i) = ρ′(j)
and ρ(j) = ρ′(j). Clearly, the probability that the first of the two agents is
proposed given ρ and θ is the same: ω(i, ρ, θ) = 0 = ω(j, ρ′, θ).
If q(i) = q(j) = 1, the probability that the second agent is proposed is equal
to zero, so ω(i, ρ′, θ) = 0 = ω(j, ρ, θ).
If q(i) = q(j) = 0, if θ(i) = θ(j) = 1, the probability that the second agent
is proposed is equal to zero ; if θ(i) = θ(j) = 0, the probability that the
second agent is proposed is zero unless all agents are selective and pick low
values, so that ω(i, ρ′, θ) = ω(j, ρ, θ) = 1 if θ(k) = 1, q(k) = 0 for all k
such that ρ(k) = ρ′(k) < ρ(j) and ω(i, ρ′, θ) = ω(j, ρ, θ) = 0 otherwise . If
θ(i) = 1, θ(j) = 0, ω(j, ρ, θ) = 0 and ω(i, ρ′, θ) = 1 if θ(k) = 1, q(k) = 0 for
all k such that ρ(k) = ρ′(k) < ρ(j) and ω(i, ρ′, θ) = 0 otherwise. Similarly if
θ(i) = 0, θ(j) = 1, ω(i, ρ′, θ) = 0 and ω(j, ρ, θ) = 1 if θ(k) = 1, q(k) = 0 for
all k such that ρ(k) = ρ′(k) < ρ(j) and ω(j, ρ, θ) = 0. Hence, if q(k) = 1 for
some k 6= i, j such that ρ(k) < ρ(j), ω(i, ρ′, θ) = ω(j, ρ, θ) = 0. If for all k,
ρ(k) < ρ(j), q(k) = 0, taking expectations over the realizations of θ,

ω(i, ρ′) = Eθω(i, ρ′, θ) ≡ Pr[θ(k) = 1∀k, ρ(k) < ρ(j)] = Eθω(j, ρ, θ) ≡ ω(j, ρ).

Finally, in order to compute ω(i), ω(j), we take expectations over all the
orders. Given that the set of orders R can be decomposed into those orders
for which ρ(i) < ρ(j) and those for which ρ(j) < ρ(i), we compute

ω(i) =
∑

ρ|ρ(i)<ρ(j)

p(ρ)ω(i, ρ) +
∑

ρ|ρ(j)<ρ(i)

p(ρ)ω(i, ρ).

For any fixed order ρ such that ρ(i) < ρ(j), consider the associated order ρ′

such that ρ′(j) = ρ(i), ρ′(i) = ρ(j).

ω(i) =
∑

ρ|ρ(i)<ρ(j)

(p(ρ)ω(i, ρ) + p(ρ′)ω(i, ρ′).

As noted above, ω(i, ρ) = ω(j, ρ′) and ω(i, ρ′) = ω(j, ρ). We also know
that for a fixed order ρ, the expected probability of being proposed is higher
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for the first agent in the order. Hence, ω(i, ρ)−ω(j, ρ) ≥ ω(j, ρ′)−ω(i, ρ′) ≥ 0.
Furthermore, by assumption 2.1, p(ρ) ≥ p(ρ′). We thus have:

p(ρ)ω(i, ρ) + p(ρ′)ω(i, ρ′) ≥ p(ρ)ω(j, ρ) + p(ρ′)ω(j, ρ′). (9)

concluding the proof of the Lemma.

Proof of Lemma 4.2; The proof is by induction on the rank of agents.
Consider first agents 1 and 2. Let q(1) and q(2) be the equilibrium strategies
of the two agents and suppose first that q(1) = q(2). We compute

V (1)− c = [1− (1− π)q(1))− c

γ(1)
],

V (2)− c =
γ(1)

γ(1) + γ(2)
(V (1)− c) +

γ(2)

γ(1) + γ(2)
[1− (1− π)q(2))− c

γ(2)
].

By Lemma 4.1, γ(2) ≤ γ(1) so that [1− (1− π)q(1))− c
γ(2)

] ≤ [1− (1−
π)q(2)) − c

γ(1)
], establishing that V (1) − c ≥ V (2) − c. Next suppose that

q(1) 6= q(2) and let Ṽ (1) denote the value of agent 1 if he plays strategy
q(2). By the preceding computation, Ṽ (1) ≥ V (2). But as agent 1 optimally
chooses q(1) 6= q(2), V (1) ≥ Ṽ (1) ≥ V (2).

Suppose now that for all j < i, V (j + 1) ≤ V (j). Assume first that
q(i) = q(i+ 1) and compute

V (i)− c =

∑i−1
k=1 γ(k)∑i
k=1 γ(k)

(V (i− 1)− c) +
γ(i)∑i
k=1 γ(k)

[1− (1− π)q(i))− c

γ(i)
],

V (i+ 1)− c =

∑i
k=1 γ(k)∑i+1
k=1 γ(k)

(V (i)− c) +
γ(i+ 1)∑i+1
k=1 γ(k)

[1− (1− π)q(i+ 1))− c

γ(i+ 1)
].

By the induction hypothesis, V (i)− c ≤ V (i− 1)− c and by Lemma 4.1,
γ(i + 1) ≤ γ(i) so that [1− (1− π)q(i))− c

γ(i+1)
] ≤ [1− (1− π)q(i))− c

γ(i)
].

Hence V (i+ 1) ≤ V (i). If q(i+ 1) 6= q(i), let Ṽ (i) denote the value fo agent
i when he chooses q = q(i + 1). By the same revealed preference argument
as above, V (i) ≥ Ṽ (i) ≥ V (i+ 1), completing the proof of the Lemma.

Proof of Lemma 4.3: Let µ(i) denote the probability that an agent k < i
accepts the object after is refusal so that the continuation value of agent i
after a rejection is

W (i) ≡ µ(i)V (i− 1) + (1− µ(i))V (i)− c.
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Suppose by contradiction that there exists a (pure strategy) equilibrium
where q(i) = 1 and q(i + 1) = 0. This implies that W (i) ≤ 0 ≤ W (i + 1).
By Lemma 4.2, V (i + 1) ≤ V (i) ≤ V (i − 1). Furthermore, if p is not
the uniform random order, an inspection of the proof of Lemma 4.1 shows
that γ(i) > γ(i + 1) if q(i) = q(i + 1) so that the proof of Lemma 4.2 can
be adapted to show that these inequalities are strict. Hence, if W (i) ≤ 0
necessarily V (i) < 0 and if W (i+ 1) > 0, we must have V (i) > 0, yielding a
contradiction.

Proof of Proposition 4.4: Consider first a selective agent i ≤ k. Notice
that, as all t < i are selective in the k equilibrium,

∑i
t=1 ω(t) ≤ (1 + (1 −

π) + ... + (1 − π)k−1). The probability that the object is proposed to an
agent t = 1, .., i is maximized when p guarantees that the first agents who
are proposed the object are agents 1, .., i. In that case, irrespective of the
order in which agents 1, ..i are placed, the probabilities of being proposed are
1 for the first agent, 1−π for the second,...,(1−π)−1 for the ith agent in the
order ρ. Next notice that the strict seniority order is the only order which
guarantees that for any i ≤ k,

∑i
t=1 ω(t) ≤ (1 + (1 − π) + ... + (1 − π)k−1).

Now

V k(i) = 1− ic

π
∑i

t=1 ω(t)
≤ 1− ic

π(1 + (1− π) + ...+ (1− π)i)
= V̂ k(i).

Next consider an agent i > k. Since the k+ 1th player in the order ρ will
necessarily be nonselective and pick up the object, the sum of probabilities
that an agent t = 1, ...i is proposed the object is bounded by (1 + (1− π) +
... + (1 − π)k) for any i > k. Notice that the maximum is attained for any
order ρ which places agents 1, 2..., k at the top. Furthermore, the probability
that an agent t = 1, ...i picks up the object is always bounded by 1. In the
strict seniority order, this probability is exactly equal to 1, as agent k+1 will
always pick up the object when none of the selective agents has accepted it.
Next, notice that

V k(i) =
π
∑i

t=1 ω(t)∑i
t=1 γ(t)

− ic∑i
t=1 γ(t)

.

Given that in equilibrium π
∑i

t=1 ω(t) ≤ ic,

V k(i) ≤ π

i∑
t=1

ω(t)− ic ≤ π(1 + (1− π) + ...+ (1− π)k)− ic = V̂ k(i).
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Next suppose that k = 0, so that no agent is selective. Under the uniform
random order ω(i) = 1

n
for all i (all agents have an equal probability to be

chosen first) whereas, by Lemma 4.1 ω(i) ≤ ω(j) for i < j in all mechanism
p ∈ P . Furthermore, as the first player picks the object,

∑n
t=1 ω(t) = 1 and

hence
∑i

t=1 ω(t) ≥ i
n

=
∑i

t=1 ω̃(i). Now in a 0 equilibrium,

V 0(i) = π − ic∑i
t=1 ω(t)

≥ π − nc = Ṽ 0(i).

If k = 1, again under the uniform random order ω̃(i) = ω̃(j) = 1
n

∑n−1
t=0 (1−

π)t = 1−(1−π)n

nπ
. For any other mechanism p ∈ P , by Lemma 4.1, ω(i) ≥ ω(j)

if i < j. Furthermore,
∑n

i=1 ω(i) = 1−(1−π)n

π
. Hence,

V n(i) = 1− ic

π
∑i

t=1 ω(t)
≥ 1− nc

1− (1− π)n
= Ṽ n(i),

completing the proof of the Proposition.

Proof of Proposition 4.5: Notice first that, along any realization of ρ
where i precedes k+ 1, the probability that i is proposed the object remains
the same under the k and the k + 1 equilibrium, but along any realization
of ρ where k + 1 precedes i, the probability that i is proposed the object
weakly increases. Hence, denoting by ωk(i) the expected probability that i
is proposed the object in the k equilibrium, ωk(i) ≤ ωk+1(i) for all i 6= k + 1
and ωk(k + 1) = ωk+1(k + 1). Now consider first i ≤ k, as

W k+1(i) = 1− c

π
∑i

t=1 ω
k+1(t)

,

and ωk+1(t) ≥ ωk(t) for all t, W k+1(i) ≥ W k(i). Next, consider i ≥ k + 1.
We will prove the stronger statement:

[1−
n∑

t=i+1

ωk+1(t)]W k+1(i) ≥ [1−
n∑

t=i+1

ωk(t)]W k(i).

Notice that for i = k + 1 this statement is equivalent to:

π

k∑
t=1

ωk+1(t)W k+1(k)+πωk+1(k+1)−c ≥ π
k∑
t=1

ωk(t)W k(k)+πωk(k+1)−c,

Using the fact that ωk+1(t) ≥ ωk(t) for all t 6= k+1 , ωk+1(k+1) = ωk(k+1)
and W k+1(k) ≥ W k(k), , the inequality follows. Suppose now that the
statement is true for all t < i and consider i, we compute
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[1−
n∑

t=i+1

ωk+1(t)W k+1(i) =
i−1∑
t=1

γk+1(t)W k+1(i− 1) + πωk+1(i)− c.

Now, as i− 1 > k,
∑i−1

t=1 γ
k+1(t) = 1−

∑n
t=i ω

k+1(t), and using the induction
hypothesis and the fact that ωk+1(i) ≥ ωk(i),

[1−
n∑

t=i+1

ωk+1(t)W k+1(i) = [1−
n∑
t=i

ωk+1(t)]W k+1(i− 1) + πωk+1(i)− c

≥ [1−
n∑
t=i

ωk(t)]W k(i− 1)πωk(i)− c

= [1−
n∑

t=i+1

ωk(t)]W k(i),

completing the proof of the Proposition .

Proof of Proposition 4.6: Notice that the equilibrium under p̂ is always
more selective than the equilibrium under p̃. If both mechanisms admit a n
equilibrium, the expected values of all agents are higher under p̂ by Propo-
sition 4.4. If the equilibrium under p̂ is a k equilibrium and a 0 equilibrium
under p̃, the expected values of all agents are higher under p̂ by Propositions
4.5 and 4.4. The results on misallocation and expected waste derive from
the fact that the equilibrium under p̂ is always more selective.

Proof of Lemma 5.2 : The proof is by induction on the rank of agents.
Consider first agents 1 and 2. Let θ(1) and θ(2) be the equilibrium strategies
of the two agents and suppose first that θ(1) = θ(2) = θ. We compute

W (1) =

∫ θ
θ
tf(t)dt

1− F (θ)
− c

γ(1)

W (2) =
γ(1)

γ(1) + γ(2)
W (1) +

γ(2)

γ(1) + γ(2)
[

∫ θ
θ
tf(t)dt

1− F (θ)
− c

γ(2)
].

By Lemma 5.1, γ(2) ≤ γ(1) so that [
∫ θ
θ tf(t)dt

1−F (θ)
− c

γ(2)
] ≤ [

∫ θ
θ tf(t)dt

1−F (θ)
− c

γ(1)
],

establishing that W (1) ≥ W (2). Next suppose that θ(1) 6= θ(2) and let
W̃ (1) denote the value of agent 1 if he plays strategy θ(2). By the preceding
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computation, W̃ (1) ≥ W (2). But as agent 1 optimally chooses θ(1), W (1) ≥
W̃ (1) ≥ W (2).

Suppose now that for all j < i, W (j + 1) ≤ W (j). Assume first that
θ(i) = θ(i+ 1) = θ and compute

W (1) =

∑i−1
k=1 γ(k)∑i
k=1 γ(k)

W (i− 1) +
γ(i)∑i
k=1 γ(k)

[

∫ θ
θ
tf(t)dt

1− F (θ)
− c

γ(i)
],

W (i+ 1) =

∑i
k=1 γ(k)∑i+1
k=1 γ(k)

W (i) +
γ(i+ 1)∑i+1
k=1 γ(k)

[

∫ θ
θ
tf(t)dt

1− F (θ)
− c

γ(i+ 1)
].

By the induction hypothesis, W (i) ≤ W (i− 1) and by Lemma 4.1, γ(i+

1) ≤ γ(i) so that [[
∫ θ
θ tf(t)dt

1−F (θ)
− c
γ(i+1)

] ≤ [
∫ θ
θ tf(t)dt

1−F (θ)
− c
γ(i)

]. Hence W (i+1) ≤ W (i).

If θ(i + 1) 6= θ(i), let W̃ (i) denote the value fo agent i when he chooses
θ(i+1). By the same revealed preference argument as above, W (i) ≥ W̃ (i) ≥
W (i+ 1).

Proof of Proposition 5.3: Rewrite the value of agent i as

V (i) =

∑i
j=1 γj[

∫ θ
θ(j) tf(t)dt

1−F (θ(j))
− c

γj
]∑i

j=1 γj
.

Observe that because γ(i) > γ(i + 1), − c
γi
> − c

γi+1
and because θ(i) ≥

θ(i + 1),
∫ θ
θ(i) tf(t)dt

1−F (θ(i))
≥

∫ θ
θ(i+1) tf(t)dt

1−F (θ(i+1))
. Hence W (i) is a convex combination of

the decreasing sequence of points [
∫ θ
θ(j) tf(t)dt

1−F (θ(j))
− c

γj
], j = 1, .., i. It is thus

maximized when we place maximal weight on γ1, then maximal weight on
γ2, etc. The probabilistic sequence in P which lexicographically maximizes
the vector (γ1, ..., γi) for any strategy vector (θ(1), .., θ(n)) is the seniority
order. The probabilistic sequence which minimizes the vector is the uniform
lottery, establishing the result.

Proof of Proposition 5.4: For any i and any (θ(1), .., θ(i−1)) let Θi(θ(1), ..., θ(i−
1)) denote the optimal threshold of agent i given the thresholds of the pre-
ceding agents. As a first step of the proof, we show the following claim:

Claim A.1 For any i, any (θ(1), ..., θ(i−2)) and any θ(i1) ≤ Θi−1(θ(1), ..., θ(i−
2)), gi(θ(1), .., θ(i−1)) ≡ −θ(i−1)+

∫ θ
Θi(θ(1),..,θ(i−1)

tf(t)dt+F (Θi(θ(1), .., θ(i−
1))φi(θ(1), ..., θ(i− 1)) ≥ 0.
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Proof of Claim A.1: Recall that the threshold of agent i under the priority
rule is computed as the unique solution to

θ(i)[1− F (θ(1))..F (θ(i))] =

∫ θ

θ(1)

tf(t)dt+ F (θ(1))

∫ θ

θ(2)

tf(t)dt+ ..

+ ..+ F (θ(1))..F (θ(i− 1))

∫ θ

θ(i)

tf(t)dt− ic = 0.

We compute

sign
∂Θi

∂θ(i− 1)
= sign[−θ(i− 1) +

∫ θ

Θi

tf(t)dt+ F (Θi)Θi] ≡ gi

Our objective is to sign this last expression gi. Wet compute the derivative
of gi with respect to θ(i− 1):

gi
θ(i− 1)

= −1 + F (Θi)
∂Θi

∂θ(i− 1)
.

Because g(i) = 0 if and only if ∂Θi
∂θ(i−1)

= 0, we conclude that ∂gi
∂θ(i−1)

< 0

when gi = 0. As g(i) > 0 for θ(i− 1) = 0, this establishes that there exists a
θ(i− 1) such that, whenever θ(i− 1) < θ(i− 1), gi(θ(i− 1)) > 0. In order to
prove the claim, we will show that gi(θ(1), .., θ(i−2),Θi−1(θ1), ..θ(i−2)) > 0.

In fact, we use the characterization of the optimal threshold θi−1 to com-
pute

Θi−1(1− F (θ(1))..F (θ(i− 1)) =

∫ θ

θ(1)

tf(t)dt+ ...

+ F (θ(1))..F (θ(i− 2))

∫ θ

Θi−1

tf(t)dt− (i− 1)c.

Replacing in gi and multiplying by (1− F (θ(1), ...F (Θi−1), we obtain
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Bi ≡ gi(θ(1), .., θ(i− 2),Θi−1)(1− F (θ(1), ...F (Θi−1)

= −
∫ θ

θ(1)

tf(t)dt− ...− F (θ(1))..F (θ(i− 2))

∫ θ

Θi−1

tf(t)dt

+ (i− 1)c+ (1− F (θ(1), ...F (Θi−1)[

∫ θ

Θi

tf(t)dt+ F (Θi)Θi,

= −
∫ θ

θ(1)

tf(t)dt− ...− F (θ(1))..F (Θ(i− 1))

∫ θ

Θi

tf(t)dt

+ (i− 1)c+

∫ θ

Θi

tf(t)dt+ [1− F (θ(1))...F (Θi−1)F (Θi)]Θi − (1− F (Θi))Θi.

Now using the characterization of the optimal threshold Θi at (θ(1), .., θ(i−
2),Θi−1,

[1−F (θ(1))...F (Θi−1)F (Θi)]Θi =

∫ θ

θ(1)

tf(t)dt+...+F (θ(1))..F (Θ(i−1))

∫ θ

Θi

tf(t)dt−ic,

so that

Bi =

∫ θ

Θi

(t−Θi)f(t)dt− c.

Now observe that
∫ θ
θ̂(1)

(t − θ̂(1))f(t) − c = 0, that we must necessarily

have Θi < θ̂(1) because θ̂(1) is the value of an agent at an unconstrained

maximum and that
∫ θ
θ

(t− θ)f(t)dt is a decreasing function of θ to conclude
that gi(θ(1), .., θ(i− 2),Θi−1) ≥ 0, establishing the claim.

Using Claim A.1, we immediately observe that −θ(1) +
∫ θ
φ2
tf(t)dt +

F (φ2)φ2 ≥ 0 so that φ2(θ) is an increasing function for θ ≤ θ̂1. Observe also

that by Claim A.1, for any θ(j) < Θj, −θ(j)+
∫ θ

Θj+1
tf(t)dt+F (Θj+1)Θj+1 ≥

0. The next step of the proof uses an induction argument. Consider an agent
at rank i. Suppose that for all j < i, φj(θ) is increasing in θ for θ ≤ θ̂1. We
compute

∂φi
∂θ

=
i−1∑
j=1

∂φj
∂θ

∂θi
∂θj

+
∂θi
∂θ

.
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By the inductive step,
∂φj
∂θ
≥ 0 for all j. Now compute for any j ≤ i,

sign
∂θi
∂θj

= sign− θ(j) +

∫ θ

Θj+1

tf(t)dt+ F (Θj+1)

∫ θ

Θj+2

tf(t)dt

+ ....F (Θj+1)...F (θi−1)

∫ θ

Θi

tf(t)dt+ F (Θj+1)...F (Θi)Θi.

Next we compute

D = −θ(j) +

∫ θ

Θj+1

tf(t)dt+ F (Θj+1)

∫ θ

Θj+2

tf(t)dt

+ ....F (Θj+1)...F (θi−1)

∫ θ

Θi

tf(t)dt+ F (Θj+1)...F (Θi)Θi,

= [−θ(j) +

∫ θ

Θj+1

tf(t)dt+ F (Θj+1)Θj+1]

+ F (Θj+1)[−Θ(j + 1) +

∫ θ

Θj+2

tf(t)dt+ F (Θj+2)Θj+2]

+ ...F (Θj+1)...F (Θi−1)[−Θi−1 +

∫ θ

Θi

tf(t)dt+ F (Θi)Θi]

By the inductive step, all summands in D are positive so that D ≥ 0, com-
pleting the proof of the Lemma.

Proof of Proposition 5.5: As a first step in the proof, we show that
θ∗1 = W ∗

1 is maximized at p = 1. Fix a value θ2, and consider the mappings
h(θ, p) = W1(p, θ, θ2). By Proposition ??, h(θ, p) is increasing in p. Hence,
for all θ and all p < 1, h(θ, 1) > h(θ, p). Now, by equation 5, θ∗1 is a fixed
point of the mapping h(p, θ). By Theorem 1 in Milgrom and Roberts (1994),
because h(p, θ) is monotonically increasing in p, the lowest and highest fixed
points of h(p, θ) are increasing in p. In addition, at p = 1, there exists a
unique fixed point θ∗1, which is independent of θ2. Hence, for any θ2, the
unique fixed point θ∗1(1) > θ(1)(p, θ2) ≥ θ∗1(p), establishing the result.

To show thatW ∗
2 is maximized at p = 1,, consider any p < 1 and pick equi-

librium thresholds θ∗1(p) and θ∗2(p). By Lemma 5.2, θ∗1(p) ≥ θ∗2(p) (with strict
inequality when p > 1

2
). By Proposition 5.3, W2 evaluated at (θ∗1(p)θ∗2(p)) is

increasing in p, so that

W2(1, θ∗1(p), θ∗2(p)) > W2(p, θ∗1(p), θ∗2(p)) = W ∗
2 (p).
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In addition, because agent 2 can optimally choose θ∗2 as a best response to
θ∗1(p) when p = 1,

W̃2(θ∗1(p)) ≥ W2(1, θ∗1(p), θ∗2(p)).

Finally, notice that we have shown that θ∗1(1) > θ∗1(p) and, by Proposition
5.4, for any θ1 < θ∗1(1), W ∗

2 (1) is strictly increasing in θ1.. Hence,

W ∗
2 (1) = W̃2(θ∗(1)) > ˜W − 2(θ∗1(p),

establishing that W ∗
2 (1) > W ∗

2 (p) for all p < 1.

Proof of Lemma 5.7:
Consider the probability of misallocation µ and notice that, as θ∗1(1) >

θ∗1(p) for all p,

µ(1) =

∫ θ

θ∗1(1)

(1− F (θ))dθ

<

∫ θ

θ∗1(p)

(1− F (θ))dθ

<

∫ θ

θ∗1(p)

(1− F (θ))dθ + (1− p)
∫ θ∗1(p)

θ∗2(p)

(1− F (θ∗1(p))

= µ(p).
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